Tensor Documentation
Release 0.0.6

Colin Alston

February 07, 2015

Contents

1 Getting started

1.1 Installation e

1.2 Creating a configuration file e e e

1.3 Starting Tensor o o e e e e e e e e e e e e e e
2 Sources

2.1 Introduction e e

2.2 Writing your OWI SOUICES . « « ¢ v v v v v v e e et e e e e e e e e e e e e e e e e e

2.3 Handling asynchronous tasks L e e

24 Thinkingoutside the box L
3 Outputs

3.1 Introduction e e e e e e e e e e e e

3.2 Writing your OWn OULPULS v v v v vt et e e e e e e e e e e e e e e e e

4 Example configurations

4.1 Replacing Munin . . .
5 tensor

5.1 tensor.interfaces . . .

5.2 tensor.objects

5.3 tensor.service

5.4 tensorutils

6 tensor.protocol
6.1 tensor.protocol.riemann

7 tensor.sources
7.1 tensor.sources.network

7.2 tensor.sources.munin .
7.3 tensor.sources.linux .
7.4 tensor.sources.media .

8 tensor.outputs
8.1 tensor.outputs.riemann

9 Indices and tables

Python Module Index

~N N L A W W W

O \&

11
11

19
19
19
20
20

23
23

25
25
25
26
27

29
29

31

33

Tensor Documentation, Release 0.0.6

Tensor is a modular gateway and event router for Riemann, built using the Twisted framework.

Contents:

Contents 1

Tensor Documentation, Release 0.0.6

2 Contents

CHAPTER 1

Getting started

1.1 Installation

Tensor can be installed from PyPi with pip

$ pip install tensor

This will also install Twisted, protobuf and PyYAML
Or you can use the .deb package

$ aptitude install python-twisted python-protobuf python-yaml
$ wget https://github.com/calston/tensor/releases/download/0.0.7/tensor_0.0.7_amd64.deb
$ dpkg -1 tensor_0.0.7_amdo64.deb

This also gives you an init script and default config in /etc/tensor/

1.2 Creating a configuration file

Tensor uses a simple YAML configuration file
The first basic requirements are the Riemann server and port (defaults to localhost:5555) and the queue interval:

server: localhost
port: 5555
interval: 1.0
proto: udp

Tensors checks are Python classes (called sources) which are instantiated with the configuration block which defines
them. Rather than being one-shot scripts, a source object remains in memory with its own timer which adds events to
a queue. The interval defined above is the rate at which these events are rolled up into a message and sent to Riemann.

It is important then that inferval is set to a value appropriate to how frequently you want to see them in Riemann, as
well as the rate at which they collect metrics from the system. All interval attributes are floating point in seconds, this
means you can check (and send to Riemann) at rates well below 1 second.

You can configure multiple outputs which receive a copy of every message for example

outputs:
— output: tensor.outputs.riemann.RiemannUDP
server: localhost
port: 5555

Tensor Documentation, Release 0.0.6

If you enable multiple outputs then the server, port and proto options will go un-used and the default Riemann TCP
transport won'’t start.

You can configure as many outputs as you like, or create your own.

To configure the basic CPU usage source add it to the sources list in the config file

sources:
- service: cpu
source: tensor.sources.linux.basic.CPU
interval: 1.0
warning: {
cpu: "> 0.5"
}
critical: {
cpu: "> 0.8"
}

This will measure the CPU from /proc/stat every second, with a warning state if the value exceeds 50%, and a critical
state if it exceeds 80%

The service attribute can be any string you like, populating the service field in Riemann. The logical expression to
raise the state of the event is (eg. critical) is assigned to a key which matches the service name.

Sources may return more than one metric, in which case it will add a prefix to the service. The state expression must
correspond to that as well.

For example, the Ping check returns both latency and packet loss:

service: googledns
source: tensor.sources.network.Ping
interval: 60.0
destination: 8.8.8.8
critical: {
googledns.latency: "> 100",
googledns.loss: "> 0"

}

This will ping 8.8.8.8 every 60 seconds and raise a critical alert for the latency metric if it exceeds 100ms, and the
packet loss metric if there is any at all.

1.3 Starting Tensor

To start Tensor, simply use twistd to run the service and pass a config file:

twistd —-n tensor -c tensor.yml

4 Chapter 1. Getting started

CHAPTER 2

Sources

2.1 Introduction

Sources are Python objects which subclass tensor.objects.Source. They are constructed with a dictionary
parsed from the YAML configuration block which defines them, and as such can read any attributes from that either
optional or mandatory.

Since sources are constructed at startup time they can retain any required state, for example the last metric value to
report rates of change or for any other purpose. However since a Tensor process might be running many checks a
source should not use an excessive amount of memory.

The source configuration option is passed a string representing an object in much the same way as you would import
it in a python module. The final class name is split from this string. For example specifying:

source: tensor.sources.network.Ping

is equivalent to:

from tensor.sources.network import Ping

2.2 Writing your own sources

A source class must subclass tensor.objects.Source and also implement the interface
tensor.interfaces.ITensorSource

The source must have a gef method which returns a tensor.objects.Event object. The Source parent class pro-
vides a helper method createEvent which performs the metric level checking (evaluating the simple logical statement
in the configuration), sets the correct service name and handles prefixing service names.

A “Hello world” source:

from zope.interface import implements

from tensor.interfaces import ITensorSource
from tensor.objects import Source

class HelloWorld (Source) :
implements (ITensorSource)

def get (self):
return self.createEvent ('ok’, ’"Hello world!’, 0)

Tensor Documentation, Release 0.0.6

To hold some state, you can re-implement the __init__ method, as long as the arguments remain the same.
Extending the above example to create a simple flip-flop metric event:

from zope.interface import implements

from tensor.interfaces import ITensorSource
from tensor.objects import Source

class HelloWorld (Source) :
implements (ITensorSource)

def _ init_ (self, =*a):
Source._ _init__ (self, =*a)
self.bit = False

def get (self):
self.bit = not self.bit
return self.createEvent ('ok’, ’"Hello world!’, self.bit and 0.0 or 1.0)

You could then place this in a Python module like hello.py and as long as it’s in the Python path for Tensor it can be

used as a source with hello.HelloWorld

2.3 Handling asynchronous tasks

Since Tensor is written using the Twisted asynchronous framework, sources can (and in most cases must) make full

use of it to implement network checks, or execute other processes.

The simplest example of a source which executes an external process is the ProcessCount check:
from zope.interface import implements

from twisted.internet import defer

from tensor.interfaces import ITensorSource

from tensor.objects import Source

from tensor.utils import fork

class ProcessCount (Source) :
implements (ITensorSource)

@defer.inlineCallbacks
def get (self):
out, err, code = yield fork(’/bin/ps’, args=('-e’,))

count = len(out.strip(’\n’).split(’\n’))

defer.returnValue (
self.createEvent (" ok’, ’'Process count %s’ % (count), count)

For more information please read the Twisted documentation at https://twistedmatrix.com/trac/wiki/Documentation

The tensor.utils. fork () method returns a deferred which can timeout after a specified time.

6 Chapter 2. Sources

https://twistedmatrix.com/trac/wiki/Documentation

Tensor Documentation, Release 0.0.6

2.4 Thinking outside the box

Historically monitoring systems are poorly architected, and terribly inflexible. To demonstrate how Tensor offers a
different concept to the boring status quo it’s interesting to note that there is nothing preventing you from starting a
listening service directly within a source which processes and relays events to Riemann implementing some protocol.

Here is an example of a source which listens for TCP connections to port 8000, accepting any number on a line and
passing that to the event queue:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
from twisted.internet import reactor

from zope.interface import implements

from tensor.interfaces import ITensorSource
from tensor.objects import Source

class Numbers (LineReceiver) :
def _ init_ (self, source):
self.source = source

def lineReceived(self, line):
mmrn

Send any numbers received back to the Tensor queue
print repr(line)
try:
num = float (line)
self.source.queueBack (
self.source.createEvent (" ok’, ’'Number: 2s’ % num, num)
)
except:
pass

class NumbersFactory (Factory) :
def _ init_ (self, source):
self.source = source

def buildProtocol (self, addr):
return Numbers (self.source)

class NumberProxy (Source) :
implements (ITensorSource)

def startTimer (self):
Override starting the source timer, we don’t need it
f = NumbersFactory(self)
reactor.listenTCP (8000, f)

def get (self):
Implement the get method, but we can ignore it
pass

2.4. Thinking outside the box 7

Tensor Documentation, Release 0.0.6

8 Chapter 2. Sources

CHAPTER 3

Outputs

3.1 Introduction

Outputs are Python objects which subclass tensor.objects.Output. They are constructed with a dictionary
parsed from the YAML configuration block which defines them, and as such can read any attributes from that either

optional or mandatory.

Since outputs are constructed at startup time they can retain any required state. A copy of the queue is passed to
all :method:‘tensor.objects.Output.eventsReceived® calls which happen at each queue interval config setting as the

queue is emptied. This list of tensor.objects.Event objects must not be altered by the output.

The output configuration option is passed a string representing an object the same way as sources configurations are

output: tensor.sources.network.Ping

3.2 Writing your own outputs

An output clas should subclass tensor.objects.Output.

The output can implement a createClient method which starts the output in whatever way necessary and can be a
deferred. The output must also have a eventsReceived method which takes a list of tensor.objects.Event

objects and process them accordingly, it can also be a deferred.
An example logging source:

from twisted.internet import reactor, defer
from twisted.python import log

from tensor.objects import Output

class Logger (Output) :
def eventsReceived(self, events):
log.msg ("Events dequeued: " % len(events))

If you save this as fest.py the basic configuration you need is simply

outputs:
- output: tensor.outputs.riemann.RiemannUDP
server: localhost
port: 5555

— output: test.Logger

Tensor Documentation, Release 0.0.6

You should now see how many events are exiting in the Tensor log file

2014-10-24 15:35:27+0200 [-] Starting protocol <tensor.protocol.riemann.RiemannUDP object at 0x7£3b5:
2014-10-24 15:35:28+0200 [-] Events dequeued: 7
2014-10-24 15:35:29+0200 [-] Events dequeued: 2
2014-10-24 15:35:30+0200 [-] Events dequeued: 3

10 Chapter 3. Outputs

CHAPTER 4

Example configurations

4.1 Replacing Munin

The first step is to create a TRIG stack (Tensor Riemann InfluxDB Grafana).

4.1.1 Step 1: Install Riemann

$ wget http://aphyr.com/riemann/riemann_0.2.6_all.deb
$ aptitude install openijdk-7-jre
$ dpkg -1 riemann_0.2.6_all.deb

4.1.2 Step 2: Install InfluxDB

$ wget http://s3.amazonaws.com/influxdb/influxdb_latest_amd64.deb
$ sudo dpkg —-i influxdb_latest_amdo64.deb

Start InfluxDB, then quickly change the root/root default password because it also defaults to listening on all interfaces
and apparently this is not important enough for them to fix.

Create a riemann and grafana database, and some users for them

$ curl -X POST ’'http://localhost:8086/db?u=root&p=root’ \

-d ' {"name": "riemann"}’

$ curl -X POST ’"http://localhost:8086/db?u=root&p=root’ \
-d ' {"name": "grafana"}’

$ curl -X POST ’"http://localhost:8086/db/riemann/users?u=root&p=root’ \
-d " {"name": "riemann", "password": "riemann"}’

$ curl -X POST ’"http://localhost:8086/db/grafana/users?u=root&p=root’ \
-d " {"name": "grafana", "password": "grafana"}’

4.1.3 Step 3: Install Grafana

aptitude install nginx

mkdir /var/www

cd /var/www

wget http://grafanarel.s3.amazonaws.com/grafana-1.8.1.tar.gz
tar -zxf grafana-1.8.l.tar.gz

mv grafana-1.8.1 grafana

v v Ay

11

Tensor Documentation, Release 0.0.6

Now we must create an nginx configuration in /etc/nginx/sites-enabled.
You can use something like this

server {
listen 80;
server_name <your hostname>;
access_log /var/log/nginx/grafana-access.log;
error_log /var/log/nginx/grafana-error.log;

location / {
alias /var/www/grafana/;
index index.html;
try_files S$Suri $uri/ /index.html;

Next we need a configuration file for grafana. Open /var/www/grafana/config.js and use the following configuration

define ([’settings’],
function (Settings) {
return new Settings({
datasources: {
influxdb: {
type: ’influxdb’,
url: "http://<your hostname>:8086/db/riemann",
username: 'riemann’,
password: ’riemann’,
b
grafana: {
type: ’influxdb’,
url: "http://<your hostname>:8086/db/grafana",
username: 'grafana’,
password: ’'grafana’,
grafanaDB: true
}I
}I
search: {
max_results: 20
}I
default_route: ’/dashboard/file/default.json’,
unsaved_changes_warning: true,
playlist_timespan: "1m",
admin: {
password:
}I
window_title_prefix: ’Grafana - ',
plugins: {
panels: [],
dependencies: [],

rr

4.1.4 Step 4: Glue things together

Lets start by configuring Riemann to talk to InfluxDB. This is the full /etc/riemann/riemann.config file.

12

Chapter 4. Example configurations

Tensor Documentation, Release 0.0.6

; —*— mode: clojure; —x-—

; vim: filetype=clojure
(require ’capacitor.core)
(require ’capacitor.async)
(require ’"clojure.core.async)

(defn make-async-influxdb-client [opts]
(let [client (capacitor.core/make-client opts)
events—-in (capacitor.async/make-chan)
resp-out (capacitor.async/make-chan)]
(capacitor.async/run! events-in resp-out client 100 10000)
(fn [series payload]
(let [p (merge payload {
:series series
:time (» 1000 (:time payload)) ;; s — ms
1]

(clojure.core.async/put! events-in p)))))

(def influx (make-async-influxdb-client {
thost "localhost"
:port 8086
:username "riemann"
:password "riemann"
:db "riemann"

1))
(logging/init {:file "/var/log/riemann/riemann.log"})

; Listen on the local interface over TCP (5555), UDP (5555), and websockets
; (5556)
(let [host "0.0.0.0"]

(tcp—server {:host host})

(udp—server {:host host})

(ws—server {:host host}))

(periodically-expire 60)

(let [index (index)]
(streams
index

(fn [event]
(let [series (format "%s.%s" (:host event) (:service event))]
(influx series {
ctime (:time event)
:value (:metric event)

1)))))

You’re pretty much done at this point, and should see the metrics from the Riemann server process if you open up
Grafana and look through the query builder.

4.1.5 Step 5: Using Tensor to retrieve stats from munin-node

First of all, install Tensor

$ pip install tensor

4.1. Replacing Munin 13

Tensor Documentation, Release 0.0.6

Next create /etc/tensor and a tensor.yml file in that directory.

The tensor.yml config file should look like this

ttl: 60.0
interval: .0
outputs:
— output:
port:
server:

Sources
sources:

- service:

source:

interval:

ttl:

critical:

12

tensor.outputs.riemann.RiemannTCP
5555
<riemann server>

mymunin

tensor.sources.munin.MuninNode

0.0

{

60.0

mymunin.system.load.load: "> 2"

This configures Tensor to connect to the munin-node on the local machine and retrieve all configured plugin values.
You can create critical alert levels by setting the dot separated prefix for the service name and munin plugin.

You can now start Tensor

$ twistd -n tensor -c /etc/tensor/tensor.yml

2014-10-22
2014-10-22
2014-10-22
2014-10-22

13
13
13
13

:30:
:30:
:30:
:30:

38+0200
38+0200
38+0200
38+0200

(-]

(-]
(-]
(-]

Log opened.
twistd 14.0.2
reactor class:

(/home/colin/riemann-tensor/ve/bin/python 2.7.6)
twisted.internet.epollreactor.EPollReactor.

starting

Starting factory <tensor.protocol.riemann.RiemannClientFactory instance

This pretty much indiciates everything is alright, or else we’d see quickly see some errors.

Next we will add some graphs to Grafana

14

Chapter 4. Example configurations

Tensor Documentation, Release 0.0.6

4.1.6 Step 6: Creating graphs in Grafana
19 Grafana Zoom Out 6 hours ago to a few seconds ago ~

Welcome to

Grafana

Documentation Links Tips & Shortcuts

Configuration Graphing Ctri+S saves the current dashboard

Troubleshooting Annotations Ciri+F Opens the dashboard finder

Support Graphite Ctri+H Hide/show row conirols

Getting started (Must InfluxDB Click and drag graph title to move panel

read!) OpenTSDB Hit Escape to exit graph when in fullscreen or edit mode
Click the colored icon in the legend to change series
color
Ctrl or Shift + Click legend name to hide other series

Click on the green row tag on the left, and delete all but the last row. This will leave you with an empty graph.
Click the title of the graph, then click Edit.
19 Grafana Back to dashboard ~ Zoom Out 6 hours ago to a few seconds ago ~

First Graph (click title to edit)

Mo datapoints @

12:30 14:00 15:30 17:00
() Graph General Mefrics Axes&Grid Display Styles

@& series

select mean(value) where group by time

/& Qgroup by time (2]

©® alias pattems stacking & and fill group by time
influxdb ~ | Add query

In the edit screen the Metrics tab will be open already. Now we can add our munin metrics. If you start typing in the
series field you should see your hosts and metrics autocomplete.

4.1. Replacing Munin

Tensor Documentation, Release 0.0.6

(] Graph General Mefrics Axes& Grid Display Styles

nemesis. plx.local.munin.system. load

nemesis.plx.local.munin.system.load load

rismann.nemesis.plx.local.munin.system.load load

Many Munin metrics are counter types which are usually converted to a rate by the RRD aggregation on Munin Graph.

Handily the tensor.sources.munin.MuninNode source takes care of this by caching the metric between run
intervals when that type is used.

If we wanted to graph our network interface all we need to do is make it a slightly better unit by multiplying the
Byte/sec metric by 8, since Grafana provides a bit/sec legend format.

To do this start by clicking the gear icon on the metric query, then select Raw query mode.
Use the following query

select value » 8 from "<your hostname>.munin.network.if_ethO.down" where $timeFilter group by time ($:

And chose an alias of “RX”. Do the same for if_ethO.up and alias that “TX”. You should end up with something like
this
19 Grafana

17:54:00 175423 17:55:00 17:5530 17:56:00

General Metrics Axes & Grid Display Styles

select value*8 from "nemesis.plx_local munin_network if_eth0.down” where $timeFilter group by time($interval) order asc
alias group by time
select value*8 from "nemesis.plx_local. munin_network.if_eth0.up" where $timeFilter group by time($interval) order asc

alias tx group by time

Click on General to edit the title, and then on Axes & Grid change the Format to bps. Under Display Styles you
can stack the data or play around with the look of the graph. Click Back to dashboard and you should end up with
something as follows

16 Chapter 4. Example configurations

Tensor Documentation, Release 0.0.6

19 Grafana

Traffic: ethl
20.0 Kbps

15.0 Kbps

10.0 Kbps

5.0 Kbps

0.0 bps

18:00

API Documentation:

4.1. Replacing Munin 17

Tensor Documentation, Release 0.0.6

18 Chapter 4. Example configurations

CHAPTER 5

tensor

5.1 tensor.interfaces

5.2 tensor.objects

class tensor.objects.Event (state, service, description, metric, ttl, tags= [], hostname=None)
Bases: object

Tensor Event object
All sources pass these to the queue, which form a proxy object to create protobuf Event objects
Arguments:
State Some sort of string < 255 chars describing the state
Service The service name for this event
Description A description for the event, ie. “My house is on fire!”
Metric int or float metric for this event
Keyword arguments:
Tags List of tag strings
Hostname Hostname for the event (defaults to system fqdn)

class tensor.objects.Output (config, tensor)
Bases: object

Output parent class
Outputs can inherit this object which provides a construct for a working output
Arguments:
Config Dictionary config for this queue (usually read from the yaml configuration)
Tensor A TensorService object for interacting with the queue manager

createClient ()
Deferred which sets up the output

eventsReceived ()
Receives a list of events and processes them

Arguments: events — list of tensor.objects. Event

19

Tensor Documentation, Release 0.0.6

stop ()
Called when the service shuts down

class tensor.objects.Source (config, queueBack, tensor)
Bases: object

Source parent class

Sources can inherit this object which provides a number of utility methods.

Arguments:
Config Dictionary config for this queue (usually read from the yaml configuration)
QueueBack A callback method to recieve a list of Event objects
Tensor A TensorService object for interacting with the queue manager

createEvent (state, description, metric, prefix=None)
Creates an Event object from the Source configuration

startTimer ()
Starts the timer for this source

tick (*args, **kwargs)
Called for every timer tick. Calls self.get which can be a deferred and passes that result back to the
queueBack method

Returns a deferred

5.3 tensor.service

class tensor.service.TensorService (config)
Bases: twisted.application.service.Service

Tensor service
Runs timers, configures sources and and manages the queue

sendEvent (event)
Callback that all event sources call when they have a new event or list of events

setupOutputs (config)
Setup output processors

setupSources (config)
Sets up source objects from the given config

5.4 tensor.utils

class tensor.utils.BodyReceiver (finished)
Bases: twisted.internet.protocol.Protocol

Simple buffering consumer for body objects

class tensor.utils.ProcessProtocol (deferred, timeout)
Bases: twisted.internet.protocol.ProcessProtocol

ProcessProtocol which supports timeouts

20 Chapter 5. tensor

Tensor Documentation, Release 0.0.6

tensor.utils.fork (executable, args=(), env={}, path=None, timeout=3600)
Provides a deferred wrapper function with a timeout function

Arguments:
Executable Executable
Keyword arguments:
Args Tupple of arguments
Env Environment dictionary

Timeout Kill the child process if timeout is exceeded

5.4. tensor.utils 21

Tensor Documentation, Release 0.0.6

22 Chapter 5. tensor

CHAPTER 6

tensor.protocol

6.1 tensor.protocol.riemann

class tensor.protocol.riemann.RiemannClientFactory
Bases: twisted.internet.protocol.ReconnectingClientFactory

A reconnecting client factory which creates RiemannProtocol instances

class tensor.protocol.riemann.RiemannProtocol
Bases: twisted.protocols.basic.Int32StringReceiver,tensor.protocol.riemann.RiemannProtobt

Riemann protobuf protocol

class tensor.protocol.riemann.RiemannUDP (host, port)
Bases: twisted.internet.protocol.DatagramProtocol,tensor.protocol.riemann.RiemannProtobui

UDP datagram protocol for Riemann

23

Tensor Documentation, Release 0.0.6

24 Chapter 6. tensor.protocol

CHAPTER 7

tensor.sources

7.1 tensor.sources.network

class tensor.sources.network.HTTP (config, queueBack, tensor)
Bases: tensor.objects.Source

Performs an HTTP request
Configuration arguments:
Method HTTP request method to use
Match A text string to match in the document when it is correct
Useragent User-Agent header to use
Metrics:
(service name).latency Time to complete request

class tensor.sources.network .Ping (config, queueBack, tensor)
Bases: tensor.objects.Source

Performs an Ping checks against a destination
Configuration arguments:

Destination Host name or IP address to ping
Metrics:

(service name).latency Ping latency

(service name).loss Packet loss

You can also override the hostname argument to make it match metrics from that host.

7.2 tensor.sources.munin

class tensor.sources.munin.MuninNode (*a, **kw)
Bases: tensor.objects.Source

Connects to munin-node and retrieves all metrics
Configuration arguments:

Host munin-node hostname (probably localhost)

25

Tensor Documentation, Release 0.0.6

Port munin-node port (probably 4949)
Metrics:
(service name).(plugin name).(keys...) A dot separated tree of munin plugin keys

class tensor.sources.munin.MuninProtocol
Bases: twisted.protocols.basic.LineReceiver

MuninProtocol - provides a line receiver protocol for making requests to munin-node

Requests must be made sequentially

7.3 tensor.sources.linux

7.3.1 tensor.sources.linux.basic
class tensor.sources.linux.basic.CPU (*a)
Bases: tensor.objects.Source
Reports system CPU utilisation as a percentage/100
Metrics:
(service name) Percentage CPU utilisation

class tensor.sources.linux.basic.DiskFree (config, queueBack, tensor)
Bases: tensor.objects.Source

Returns the free space for all mounted filesystems
Metrics:
(service name).(device) Used space (%)

class tensor.sources.linux.basic.LoadAverage (config, queueBack, tensor)
Bases: tensor.objects.Source

Reports system load average for the current host
Metrics:
(service name) Load average

class tensor.sources.linux.basic.Memory (config, queueBack, tensor)
Bases: tensor.objects.Source

Reports system memory utilisation as a percentage/100
Metrics:

(service name) Percentage memory utilisation

7.3.2 tensor.sources.linux.process

class tensor.sources.linux.process.ProcessCount (config, queueBack, tensor)
Bases: tensor.objects.Source
Returns the ps count on the system
Metrics:

(service name) Number of processes

26 Chapter 7

. tensor.sources

Tensor Documentation, Release 0.0.6

7.4 tensor.sources.media

7.4.1 tensor.sources.media.libav
class tensor.sources.media.libav.DarwinRTSP (config, queueBack, tensor)
Bases: tensor.objects.Source
Makes avprobe requests of a Darwin RTSP sample stream (sample_100kbit.mp4)
Configuration arguments:
Destination Host name or IP address to check

Metrics: :(service name): Time to complete request

You can also override the hostname argument to make it match metrics from that host.

7.4. tensor.sources.media

27

Tensor Documentation, Release 0.0.6

28 Chapter 7. tensor.sources

CHAPTER 8

tensor.outputs

8.1 tensor.outputs.riemann

29

Tensor Documentation, Release 0.0.6

30 Chapter 8. tensor.outputs

CHAPTER 9

Indices and tables

* genindex
* modindex

e search

31

Tensor Documentation, Release 0.0.6

32 Chapter 9. Indices and tables

Python Module Index

m

munin (Any), 25

n

network (Unix), 25

t

tensor.
tensor.
tensor.
tensor.
tensor.
tensor.
tensor.
tensor.
.sources.munin, 25
tensor.
tensor.

tensor

interfaces, 19

objects, 19
outputs.riemann, 29
protocol.riemann, 23
service, 20
sources.linux.basic, 26
sources.linux.process, 26
sources.media.libav, 27

sources.network, 25
utils, 20

33

Tensor Documentation, Release 0.0.6

34 Python Module Index

Index

B

BodyReceiver (class in tensor.utils), 20

C

CPU (class in tensor.sources.linux.basic), 26
createClient() (tensor.objects.Output method), 19
createEvent() (tensor.objects.Source method), 20

D

DarwinRTSP (class in tensor.sources.media.libav), 27
DiskFree (class in tensor.sources.linux.basic), 26

E

Event (class in tensor.objects), 19
eventsReceived() (tensor.objects.Output method), 19

F

fork() (in module tensor.utils), 20

H

HTTP (class in tensor.sources.network), 25

L

LoadAverage (class in tensor.sources.linux.basic), 26

M

Memory (class in tensor.sources.linux.basic), 26
munin (module), 25

MuninNode (class in tensor.sources.munin), 25
MuninProtocol (class in tensor.sources.munin), 26

N

network (module), 25

O

Output (class in tensor.objects), 19

P

Ping (class in tensor.sources.network), 25

ProcessCount (class in tensor.sources.linux.process), 26
ProcessProtocol (class in tensor.utils), 20

R

RiemannClientFactory (class in tensor.protocol.riemann),
23

RiemannProtocol (class in tensor.protocol.riemann), 23

RiemannUDP (class in tensor.protocol.riemann), 23

S

sendEvent() (tensor.service.TensorService method), 20
setupOutputs() (tensor.service.TensorService method), 20
setupSources() (tensor.service.TensorService method), 20
Source (class in tensor.objects), 20

startTimer() (tensor.objects.Source method), 20

stop() (tensor.objects.Output method), 19

T

tensor.interfaces (module), 19
tensor.objects (module), 19
tensor.outputs.riemann (module), 29
tensor.protocol.riemann (module), 23
tensor.service (module), 20
tensor.sources.linux.basic (module), 26
tensor.sources.linux.process (module), 26
tensor.sources.media.libav (module), 27
tensor.sources.munin (module), 25
tensor.sources.network (module), 25
tensor.utils (module), 20

TensorService (class in tensor.service), 20
tick() (tensor.objects.Source method), 20

35

	Getting started
	Installation
	Creating a configuration file
	Starting Tensor

	Sources
	Introduction
	Writing your own sources
	Handling asynchronous tasks
	Thinking outside the box

	Outputs
	Introduction
	Writing your own outputs

	Example configurations
	Replacing Munin

	tensor
	tensor.interfaces
	tensor.objects
	tensor.service
	tensor.utils

	tensor.protocol
	tensor.protocol.riemann

	tensor.sources
	tensor.sources.network
	tensor.sources.munin
	tensor.sources.linux
	tensor.sources.media

	tensor.outputs
	tensor.outputs.riemann

	Indices and tables
	Python Module Index

